To content

Quantum Technologies and Fundamental Physics in 2D Materials

Begin: End: Location: Hörsaalgebäude II, Hörsaal 2
Event type:
  • Colloquium
Students sitting in a lecture in the lecture hall. © Nikolas Golsch​/​TU Dortmund

Quantum Technologies and Fundamental Physics in 2D Materials

Prof. Dr. Akshay Singh

Technologies and Fundamental Physics in 2D Materials

Two-dimensional (2D) semiconducting materials (and their heterostructures) are next-generation materials relevant for optoelectronics and electronics, as well as integrated photonics and quantum technologies. In this talk, I will first present a broad overview of why 2D materials are interesting for both technologies and fundamental physics. I will then present some of our group’s work on localized excitations for use as single photon emitters (SPEs, for use in quantum communications and computing), as well as a probe for novel physics. I will discuss creation of SPE-like peaks in monolayer MoS2, by just using ultralow electron beam accelerating voltages (< 5 kV). Secondly, I will discuss localized excitations in near 0-degree twisted MoSe2/WSe2 heterostructure, where we observe several sub-meV peaks in photoluminescence (PL) spectra. Power-dependent PL suggests deep localization, and time resolved PL show possible optical cascade nature between these states. If time permits, I will discuss our group’s efforts on creating high-quality 2D materials using chemical vapor deposition.