To content

MeV ultrafast electron scattering: a view into atomic world

Begin: End: Location: Hörsaalgebäude II, Hörsaal 2
Event type:
  • Colloquium
© Xijie Wang​/​ Universität Duisburg-Essen​/​TU Dortmund
Prof. Dr. Xijie Wang

MeV ultrafast electron scattering: a view into atomic world

X-ray, neutron and electrons are powerful tools to explore atomic world.   MeV ultrafast electron scattering became a new frontier in ultrafast science due to its capability of following dynamics on femtoseconds scale with the high spatial resolution and sensitivity [1-4]. Furthermore, MeV electrons experience less multiple-scattering, and possess “real” flat Ewald-sphere; MeV ultrafast electron diffraction (MeV-UED) is an ideal tool to explore both structure and dynamics using total scattering technique.   MeV-UED had broad and transformative impact on ultrafast science, such as the first 2-D materials ultrafast structure dynamics [5], break the long-standing puzzle of efficiency degradation of quantum dots [6], light-induced transient states of quantum materials [7-8], the first direct imaging of fundamental chemical processes [9-10] and hydrogen bond dynamics in liquid water [11]. Recently, we have demonstrated the first operando experiment in ultrafast [12], the first successful ultrafast visualization of incipient plasticity in dynamically compressed matter [13] and the first observation of Einstein-de Haas effect in an antiferromagnetic material [14].  We propose to develop new generation MeV ultrafast scattering instrument in Ruhr aera to address grand challenges in material, chemical and chemical science, such as imaging proton transfer and detangle electron-nuclear coupling.

 

  1. X.J. Wang et al, Phys. Rev. E , 54, No.4, R3121 -3124 (1996).
  2. X.J. Wang et al, Proceedings of the 2003 Particle Accelerator Conference, 2003, pp. 420-422 Vol.1, doi: 10.1109/PAC.2003.1288940.
  3. P Zhu et al, New Journal of Physics 17 (6), 063004 (2014).
  4. S. Weathersby et al, Rev. Sci. Instrum. 2015, 86, 073702−073707.
  5. E. M. Mannebach et al, Nano Lett. 15, 6889 (2015).
  6. Burak Guzelturk et al., Nat Commun 12, 1860 (2021).
  7. E. J. Sie et al, Nature 565,61–66(2019). 
  8. A. Kogar et al, Nat. Phys.16, 159 (2019).
  9. J. Yang et al, Science 361, 64 (2018).
  10. T. J. A. Wolf et al, Nat. Chem. (2019).
  11. J. Yang et al.Nature 596531–535 (2021)
  12. J A. Sood et al, Science 373, 352 (2021).
  13. M. Mo et al, Nat. Commun. 13, (2022).
  14. A. Zong  et al., Nature 620, 988–993 (2023).