Promotionsvortrag von Sonja Zeißner
- Verteidigung
Diese Dissertation befasst sich mit der Entwicklung und Kalibrierung eines Algorithmus zur Identifikation von Jets aus strange-Quarks sowie einer Messung zur Bestimmung von oberen Schranken auf die CKM-Matrixelemente $|V_{ts}|$ und $|V_{td}|$ in top-Quark-Zerfällen. In dieser Arbeit werden Daten aus Proton-Proton-Kollisionen am Large Hadron Collider, die bei einer Schwerpunktsenergie von 13 TeV am ATLAS-Experiment während des Run-2 aufgenommen wurden, verwendet. Zuerst wird die maximal mögliche Trennung von Jets aus strange-Quarks und Jets aus down-Quarks an Hadronenkollidern unter der Annahme einer Nutzung von unterschiedlichen, idealisierten Detektordesigns untersucht. Hierfür werden Recurrent Neural Networks verwendet, deren Hauptkomponente Long Short-Term Memory Layers sind. Anschließend wird ein Algorithmus zur Selektion von Jets aus strange-Quarks zur Anwendung am ATLAS-Experiment entwickelt, der Deep Neural Networks verwendet. Die Identifikationseffizienz dieses Algorithmus in Bezug auf Jets aus strange-Quarks und die Wahrscheinlichkeit, Jets eines anderen Ursprungs fehlzuidentifizieren, werden in semileponischen Zerfällen von top-antitop-Paaren, die aus dem aufgenommenen Datensatz selektiert wurden, bestimmt. Schlussendlich wird der Algorithmus zur Identifikation von Jets aus strange-Quarks in Ereignissen angewendet, die semileponischen Zerfällen von top-antitop-Paaren mit einem Myon und einem Elektron im Endzustand beinhalten. Hierbei wird sein Potenzial in der Bestimmung von Schranken auf die CKM-Matrixelemente $|V_{ts}|$ und $|V_{td}|$ im zweidimensionalen Raum untersucht. Aus dieser folgen Schranken von $|V_{ts}|^2+|V_{td}|^2<0.06$, $|V_{ts}|<0.21$ und $|V_{td}|<0.24$ mit einem Konfidenzinterval von 95% unter der Annahme von CKM-Matrix-Unitarität.