Zum Inhalt

Promotionsvortrag von Lars Klompmaker

Beginn: Ende: Veranstaltungsort: AV-Raum + ZOOM
Veran­stal­tungs­art:
  • Verteidigung

Magneto-Optical Effects in Hybrid Plasmonic Nanostructures

Der Fokus dieser Arbeit liegt auf magneto-optischen Effekten und deren Verstärkung an optischen Resonanzen in hybriden plasmonischen Nanostrukturen. Eines der Hauptziele ist das bessere Verständnis der transversalen magnetischen Lenkung der Lichtemission (TMRLE) bezüglich beider Komponenten des hybriden plasmonischen Halbleiter-Modellsystems, an dem dieser neuartige Effekt untersucht wird. Hier beschreibt der TMRLE die direktionale Lenkung der Lichtemission von Exzitonen aus einem semimagnetischen Halbleiter (DMS) Quantentopf (QW), wobei die Auswahlregeln der optischen Exzitonen-Übergänge von einem externen Magnetfeld so modifiziert werden, dass sie einen transversalen Spin entlang des Magnetfeldes haben. Wird diese Lichtquelle nahe einer Oberfläche platziert, so kann sie an evaneszente optische Felder mit starkem transversalem Spin und einer Kopplung von Spin und Ausbreitungsrichtung, wie Oberflächenplasmonpolaritonen (SPPs), koppeln. Dadurch wird der Emitterspin in eine direktionale Welle entlang der Oberfläche übersetzt, die dann direktional in das Fernfeld emittieren kann. Zunächst wird die Temperaturabhängigkeit der Emissionslenkung aus dem DMS QW untersucht, welcher als stark polarisierbare Lichtquelle fungiert. Dabei zeigt sich eine starke Abnahme der erreichbaren Emissionslenkung bei steigenden Temperaturen, aber auch der aufkommende Beitrag der Leichtloch-Emission, welche in die entgegengesetzte Richtung der primären Schwerloch-Emission gelenkt wird. Außerdem werden alternative nicht-DMS-basierte QW Strukturen als Kandidaten für eine temperaturunabhängige Emissionslenkung untersucht. Zweitens wird der Einfluss des plasmonischen Nanogitters als weiterer Bestandteil der Hybridstruktur auf die verstärkte Emissionslenkung gezeigt. Dafür wird die Emissionsdirektionalität für verschiedene Gitterperioden und -spaltbreiten untersucht, wobei auch die sonst schwer zu detektierende schwache Kopplung der QW-Exzitonen und SPPs als großer Beitrag zum Direktionalitätsspektrum aufgedeckt wird. Zuletzt wird noch der transversale magneto-optische Kerr-Effekt (TMOKE) für reflektiertes und transmittiertes Licht von einer Magnetit-basierten plasmonischen Nanostruktur untersucht. Hier führt die Hybridisierung der plasmonischen und der magnetischen Wellenleitermoden zu einer breitbandigen Verstärkung des TMOKE Signals in Transmission.